inorganic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Peter Nockemann and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 KMean σ (Hg–Cl) = 0.001 Å H-atom completeness 0% R factor = 0.019 wR factor = 0.047 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ammonium mercury(II) dichloride nitrate, $(NH_4)_2$ HgCl₂ $(NO_3)_2$

The title compound, $(NH_4)_2HgCl_2(NO_3)_2$, is a double salt of HgCl₂ and NH₄NO₃ and can also be written as 'HgCl₂·2NH₄NO₃'. The structure contains HgCl₂ units which are connected by nitrate groups, through long links of ca. 2.90 Å, to give chains running along [010]. All atoms apart from the two oxygen atoms are located on a mirror plane perpendicular to the b axis. The coordination around mercury is a distorted hexagonal bipyramid.

Comment

Structures containing both the nitrate and chloride anions are quite rare, as can be seen from a search in the ICSD database. One example is the structure of $CaCl(NO_3) \cdot 2H_2O$ reported by Leclaire & Borel (1978). Carter & Zompa (1999) reported the structure of a double anion salt, (NH₄)₃[ZnCl₄]NO₃, containing tetrahedral ZnCl₄²⁻ and NO₃⁻ anions. The structure of the title compound, (NH₄)₂HgCl₂(NO₃)₂, consists of HgCl₂ units which are almost parallel to [001]. They are connected into rows parallel to [010] by weak interactions to two types of nitrate groups. One nitrate group, around N1 (parallel to the *ab* plane), bridges two HgCl₂ units with the distances Hg1···O1 = 2.790 (1) Å and Hg1···O2 = 2.865 (3) Å. The second nitrate group, around N2 (parallel to the ac plane), bridges two HgCl₂ units with a long distance of Hg1···O3 = 2.968 (3) Å. These links complete the effective coordination sphere of mercury to a '2+6' hexagonal bipyramid. The distances Hg1...Cl1 and Hg1...Cl2 of about 2.30 Å are in the usual range.

Experimental

A solution of 20 mmol (0.1608 g) NH₄NO₃ and 10 mmol (0.2715 g) HgCl₂ in a mixture of 20 ml water and 20 ml methanol was stirred at 333 K for 3 h. Single crystals of the title compound were obtained after leaving the solution at room temperature for 3 d.

© 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

HgCl₂ units connected by nitrate groups to rows along [010] in (NH₄)₂HgCl₂(NO₃)₂, with labelling and displacement ellipsoids drawn at the 50% probability level.

Received 17 June 2002 Accepted 21 June 2002 Online 12 July 2002

Figure 2 The environment of the ammonium ions in (NH₄)₂HgCl₂(NO₃)₂.

Crystal data

 $(NH_4)_2HgCl_2(NO_3)_2$ $M_r = 431.59$ Orthorhombic, *Pnma* a = 15.5758 (16) Å b = 5.4976 (5) Å c = 11.2826 (15) Å V = 966.12 (18) Å³ Z = 4 $D_x = 2.967$ Mg m⁻³

Data collection

Stoe Imaging Plate Diffraction System diffractometer φ scans Absorption correction: numerical (*X-SHAPE*; Stoe & Cie, 1998) $T_{\min} = 0.027, T_{\max} = 0.192$ 14614 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.047$ S = 0.941163 reflections 74 parameters H atoms not located Mo $K\alpha$ radiation Cell parameters from 23769 reflections $\theta = 2.2-27.0^{\circ}$ $\mu = 16.49 \text{ mm}^{-1}$ T = 293 (2) K Prism, colourless $0.3 \times 0.2 \times 0.1 \text{ mm}$

1163 independent reflections 983 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$ $\theta_{max} = 27.0^{\circ}$ $h = -19 \rightarrow 19$ $k = -7 \rightarrow 6$ $l = -14 \rightarrow 14$

$$\begin{split} &w = 1/[\sigma^2(F_o{}^2) + (0.0315P)^2] \\ &where \ P = (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}{}^{-3} \\ \Delta\rho_{\rm min} = -0.67 \ {\rm e} \ {\rm \AA}{}^{-3} \\ Extinction \ correction: \ SHELXL97 \\ Extinction \ coefficient: \ 0.0053 \ (2) \end{split}$$

Figure 3

View of the unit cell contents along [010].

Table 1

Selected geometric parameters (Å, °).

Hg1-Cl1	2.3007 (13)	O2-N1	1.245 (4)
Hg1-Cl2	2.3082 (13)	O3-N2	1.243 (3)
01-N1	1.249 (6)	O4-N2	1.227 (5)
Cl1-Hg1-Cl2	179.75 (5)	O4-N2-O3 ⁱ	120.1 (2)
$O2^{i} - N1 - O2$	120.8 (5)	O3 ⁱ -N2-O3	119.7 (5)
O2 ⁱ -N1-O1	119.6 (2)		~ ~ ~

Symmetry code: (i) $x, \frac{1}{2} - y, z$.

H atoms were not located and were not included in the refinement Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-STEP32 (Stoe & Cie, 2000); data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

References

- Brandenburg, K. (1999). *DIAMOND*. Version 2.1c, Crystal Impact GbR, Bonn, Germany.
- Carter, R. L. & Zompa, L. J. (1999). Acta Cryst. C55, 6-8.
- Leclaire, A. & Borel, M. M. (1978). Acta Cryst. B34, 902-904.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1998). X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2000). X-STEP32. Version 1.06f. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2001). X-AREA (Version 1.15) and X-RED (Version 1.22). Stoe & Cie, Darmstadt, Germany.